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Caption: Mathematical derivation of a multiple mediation model in which one mediator is a 
count variable and the other is linear with a count outcome under the counterfactual framework. 
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Definition of causal e↵ects under the counterfactual frame-

work for a single mediator

We let Ya and Ma denote respectively the values of the outcome and mediator that would
have been observed had the exposure A been set to level a. We let Yam denote the value
of the outcome that would have been observed had the exposure, A, and mediator, M , been
set to levels a and m, respectively.

The average controlled direct e↵ect comparing exposure level a to a

⇤ and fixing the
mediator to level m is defined by CDEa,a⇤(m) = E[Yam � Ya⇤m]. The average natural direct
e↵ect is then defined by NDEa,a⇤(a

⇤) = E[YaMa⇤ � Ya⇤Ma⇤ ]. The average natural indirect
e↵ect can be defined as NIEa,a⇤(a) = E[YaMa � YaMa⇤ ], which compares the e↵ect of the
mediator at levels Ma and Ma⇤ on the outcome when exposure A is set to a. Controlled
direct e↵ects and natural direct and indirect e↵ects within strata of C = c are then defined by:
CDEa,a⇤|c(m) = E[Yam � Ya⇤m|c], NDEa,a⇤|c(a

⇤) = E[YaMa⇤ � Ya⇤Ma⇤ |c] and NIEa,a⇤|c(a) =
E[YaMa � YaMa⇤ |c] respectively.

If we letX ? Y |Z denote thatX is independent of Y conditional on Z then the identifica-
tion assumptions for the causal e↵ects previously defined can be expressed formally in terms
of counterfactual independence as (i) Yam ? A|C, (ii) Yam ? M |{A,C}, (iii) Ma ? A|C,
and (iv) Yam ? Ma⇤ |C. Assumptions (i) and (ii) su�ce to identify controlled direct e↵ects;
assumptions (i)-(iv) su�ce to identify natural direct and indirect e↵ects (Pearl, 2001; Van-
derWeele and Vansteelandt, 2009). The intuitive interpretation of these assuptions follows
from the theory of causal diagrams (Pearl, 2001). Alternative identification assumptions
have also been proposed (Imai 2010a; Hafeman and VanderWeele, 2011). However, it has
been shown that the intuitive graphical interpretation of these alternative assumptions are
in fact equivalent (Shpitser and VanderWeele, 2011). Technical examples can be constructed
where one set of identifiation assumptions holds and another does not, but on a causal di-
agram corresponding to a set of non-parametric structural equations, whenever one set of
the assumptions among those in VanderWeele and Vansteelandt (2009), Imai (2010a), and
Hafeman and VanderWeele (2011) holds, the others will also.

Definition of causal e↵ects under the counterfactual frame-

work for multiple mediators

Suppose now that there are multiple mediators of interest, M = (M (1)
, ...,M

(K)) and that
we are interested in the e↵ects mediated through (M (1)

, ...,M

(K)) jointly and the e↵ects
independent of (M (1)

, ...,M

(K)). We can define controlled direct e↵ects and natural direct
and indirect e↵ects in a similar way as before simply replacing our single mediator M with
the entire vector of mediators M = (M (1)

, ...,M

(K)). Thus, let Ma be the counterfactual
value of M if exposure A were set to the value a and let Yam denote the counterfactual value
for Y if A were set to a and M were set to m. The controlled direct e↵ect is defined by
Yam � Ya⇤m; the natural direct e↵ect is defined as YaMa � Ya⇤Ma ; the natural indirect e↵ect
is defined as YaMa �YaMa⇤ ; and once again the total e↵ect can be decomposed into a natural
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direct and indirect e↵ect. Suppose again that the four assumptions about confounding
hold but now with respect to the whole set of mediators M = (M (1)

, ...,M

(K)). We once
again need to control for all exposure-outcome, mediator- outcome, and exposure-mediator
confounders, but note that now for the second and third assumptions control must be made
for the mediator-outcome confounders for all of the mediators, not just one and likewise
control must be made for the exposure-outcome confounders for all of the mediators, not
just one. The fourth assumption again requires that there be no e↵ect of the exposure that
confounds the mediator-outcome relationship for any of the mediators. If there were such
a variable then to proceed it would have to be included in the mediator vector M if the
assumption were not to be violated.

Count Mediators and Outcome with mean modeled us-

ing log link

Suppose that two mediators the outcome are count variables and that allowing for exposure-
mediator interaction the following models fit the observed data:
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If the covariates C satisfied the no-unmeasured confounding assumptions (i)-(iv) above
and the models are correctly specified, then the average natural direct and indirect e↵ects
can be derived. Extending the work of Valeri and VanderWeele (2013) on direct and indirect
e↵ect estimators when generalized linear models are employed in the presence of exposure-
mediator interaction we obtain:

NDE = E[YaMa � Ya⇤Ma |C = c]

= exp(✓0 + ✓1a+ ✓

0
4c)exp{exp(�

(1)
0 + �

(1)
1 a

⇤ + �

(1)
2

0
c)[exp(✓

(1)
2 + ✓

(1)
3 a)� 1]}

⇥exp{exp(�(2)
0 + �

(2)
1 a

⇤ + �

(2)
2

0
c)[exp(✓

(2)
2 + ✓

(2)
3 a)� 1]}+

�exp(✓0 + ✓1a
⇤ + ✓

0
4c)exp{exp(�

(1)
0 + �

(1)
1 a

⇤ + �

(1)
2

0
c)[exp(✓

(1)
2 + ✓

(1)
3 a

⇤)� 1]}
⇥exp{exp(�(2)

0 + �

(2)
1 a

⇤ + �

(2)
2

0
c)[exp(✓

(2)
2 + ✓

(2)
3 a

⇤)� 1]}.

Moreover under the same assumptions we can compute the natural indirect e↵ects by:
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Standard errors for these estimators can ben obtained either via bootstrap procedure or
by the delta method (Valeri and VanderWeele, 2013).

Count and Continuous Mediators and Count Outcome

Suppose that one mediator and the outcome are count variables modeled using log link
and one mediator is continuous modeled with linear link. Allowing for exposure-mediator
interaction the following models fit the observed data:
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If the covariates C satisfied the no-unmeasured confounding assumptions (i)-(iv) above
and the models are correctly specified, then the average natural direct and indirect e↵ects
can be derived.

NDE = E[YaMa � Ya⇤Ma |C = c]

= exp(✓0 + ✓1a+ ✓

0
4c)exp{exp(�

(1)
0 + �

(1)
1 a

⇤ + �

(1)
2

0
c)[exp(✓

(1)
2 + ✓

(1)
3 a)� 1]}

⇥exp{(�(2)
0 + �

(2)
1 a

⇤ + �

(2)
2

0
c)(✓

(2)
2 + ✓

(2)
3 a) + 1

2�
2
m(2)(✓

(2)
2 + ✓

(2)
3 a)2}+

�exp(✓0 + ✓1a
⇤ + ✓

0
4c)exp{exp(�

(1)
0 + �

(1)
1 a

⇤ + �

(1)
2

0
c)[exp(✓

(1)
2 + ✓

(1)
3 a

⇤)� 1]}
⇥exp{(�(2)

0 + �

(2)
1 a

⇤ + �

(2)
2

0
c)(✓

(2)
2 + ✓

(2)
3 a

⇤) + 1
2�

2
m(2)(✓

(2)
2 + ✓

(2)
3 a

⇤)2}.

Moreover under the same assumptions we can compute the natural indirect e↵ects by:
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Standard errors for these estimators can ben obtained either via bootstrap procedure or
by the delta method (Valeri and VanderWeele, 2013).
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